STRUCTURIE of the DIRAC-BORN-INFELD
LAGRANGIANS

INCORPORATION OF U (1) FIELDS

The Dirac-Born-Infeld Lagrangian is
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Consider the case in 4 dimensions The expres-
sion under the square root can be expressed in
terms of four sorts of terms, the first being
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This may be written as a sum of squares, the
sum being over all permutations of u, v, p, o;
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. Similarly the final term
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is a square in virtue of the fact that it is the
determinant of an antisymmetric matrix. How-
ever, the cross terms
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are also sums of squares;
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so the whole thing is quadratic. = More-
over if a Clebsch parametrisation is adopted
for the gauge potential, so that the gauge
field F; has been replaced by a Lagrange

Bracket, | F; = [D;, D,], | where
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where the gauge field F;; has been replaced by a

L = Jdet

Lagrange Bracket, | F;; = [D;, D;l,

where
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e | [ is reparametrisation invariant., Depend-
ing upon the number of p, & ¢’s and the number
of dimensions,
FANF =0, FANF NANF =0 etc. Then the
expression under the square root is a quadratic
form
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7l! permutations Ly Li, L,
two of the indices 111, f19, say X! may be iden-
tified with p{ and X#2 with ¢{* with the proviso
that if one p appears so must the corresponding
g In other words the general Brane Lagrangian
is expressible as the square root of a sum of
squares of Jacobians.




BRANES in the WRONG DIMENSIONS
LAGRANGIANS

Theoretical Physics makes progress often by
extending the domain of validity of the fun-
damental equations which govern the system.
Take, for example the Nambu-Goto String La-
grangian,
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As a string theory, it describes the motion of a
string, co-ordinatised by X, (o, 7) in d dimen-
sions and parametrised by the base space co-
ordinates o, 7. Now consider interchanging the
role of target and base space. The theory then
becomes a field theory of two fields (¢, %) in d

dimensions, with Lagrangian
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another way to write this expression is as
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The expression under the square root is of the
same structure as the Klein Gordon Lagrangian,
with J,,, playing the role of the gradient ¢,

The motivation behind this idea is to model the

transition between point particle mechanics and
Klein Gordon field theory

In standard d dimensional Mechanics, the de-
scription of free particle motion by the classical
point particle Lagrangian
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goes over in terms of a field theory, to that given
by the Lagrangian of a Klein Gordon field;
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(for a massless field). This may be cited as
an example of particle-wave duality. Is there
a similar alternative description of strings and
branes”

The idea is that strings described by the
Nambu-Goto String Lagrangian £, should anal-
ogously give rise to terms of two fields with La-
grangian which is some power of L

Likewise, a simple brane Lagrangian,
OXHrOXH
det
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field theory with as many components as there
are world-volume co-ordinates with Lagrangian
a power of

may be conjectured to be a
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We call the second Lagrangian the

L = det
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Companion Lagrangian

The original Lagrangian is diffeomorphism in-
variant; Reparametrisation Invariance, Diffeo-
morphism Invariance:
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The Companion gives rise to covariant equa-
tions Covariance:

The Companion Lagrangian with
square root is Covariant .

e |It is homogeneous of weight one.




INTEGRABILITY

The Companion equations are integrable if the
base space exceeds the target space by one. The
Klein Gordon Lagrangian with a square root is

In the minimal case of two base co-ordinates the
equation of motion is the well known Bateman
equation

The solution of the Bateman equation is given
implicitly by solving for ¢ the equation

eF(p(z,y) + yG(d(z,y)) = 1,

where F', G are arbitrary functions
More Dimensions
The equations resulting from the square root of

8



the Klein Gordon Lagrangian in more dimen-
sions are just the sum of Bateman equations
corresponding to the pairs of variables. A class
of solutions is obtained from simultaneous solu-
tions of these.

More Variables What is the situation
with the next Lagrangian with 2 fields in 3 di-
mensions (u,v = 1, 2, 3)?
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The solution to these equations is simply given
by solving the following implicit equations for

the unknowns Fj(¢, ), Gi(¢, 1)

Lthree — JZ

r1F1(9, ¥) + 23G1(, ) = 1

$2F2<¢7 ¢) + 'CC3G2(¢7 lb) =1

The generalisation should be evident.
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